NATIONAL
INSTRUMENTS

Designing a Simple Robot with NI LabVIEW

Overview

NIRo, a demonstration platform built by engineers at National Instruments, is a small unmanned ground
vehicle that uses off-the-shelf components purchased from a local hobby store. The control system is
implemented on an NI Single-Board RIO embedded platform that includes an integrated FPGA and real-time
processor.

Parts Overview

NIRo requires several key hardware components to effectively navigate an environment and avoid obstacles:
Embedded controller — for sensor data acquisition, decision making, and motor control

Infrared sensors — for detecting objects within a certain distance on both sides and rear of the robot platform
Ultrasonic sensors — for detecting objects in front of the robot because they cover a larger area

H-bridges — for directing the current from the battery to the motors in the correct direction to move the motors
forward or backward

Figure 1 shows where each hardware component is located on NIRo. Table 1 provides a detailed parts list.

©National Instruments. All rights reserved. LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National
Instruments. See ni.com/trademarks for other NI trademarks. Other product and company names are trademarks or trade names of their respective companies. For patents covering
National Instruments products, refer to the appropriate location: Help>>patents in your software, the patents.txt file on your CD, or ni.com/patents .

http://www.ni.com/trademarks
http://www.ni.com/patents

H-Bridges

. -l:':rli-j
=\ ’ 3 N

IR sensor

NI Single-
Board RIO

Figure 1. Diagram of NIRo’s Hardware

Ultrasonic
sensors

Robot Part Vendor Model
Embedded controller National Instruments sbRI0-9632
Platform Robotics Connection Traxster TM
IR range sensor Sharp GP2D12
Ultrasonic Devantech SRF05

www.hi.com

H-bridge Solutions Cubed Simple H-bridge

Table 1. Parts List

System Overview

NIRo’s software architecture uses both low-level and high-level control. High-level tasks, such as obstacle
avoidance and interpretation of sensor data, are executed on the embedded real-time processor. The
obstacle avoidance algorithm uses the data from the IR and ultrasonic sensors to make decisions about how
to navigate around its environment.

NIRo also has low-level control of the motors, which is implemented on the FPGA. Depending on the
outcome of the obstacle avoidance algorithm, the FPGA outputs a pulse-width modulation (PWM) signal over
digital 1/0O lines to control the motors. The data is transferred between the real-time processor and the FPGA
using FPGA interface functions built into LabVIEW.

The main software components that make up NIRo’s software architecture include:
* Obstacle avoidance algorithm
* Motor control (PWM)

NIRo’s software architecture is displayed in Figure 2. The IR sensors are connected to the built-in analog
channels on the NI Single-Board RIO device, and the ultrasonic sensors are connected to the built-in digital
lines. The motors are connected to the H-bridges, which are then connected to the NI Single-Board RIO
device using digital 1/0.

3 www.hi.com

Real-Time

Obstacle Avoidance

IR Sensors H-Bridge

Motors

Figure 2. NIRo’s Software Architecture Implemented on the NI Single-Board RIO Platform

Obstacle Avoidance

For obstacle avoidance, NIRo monitors the values from the IR and ultrasonic sensors. If the values coming
from the sensors indicate that something is close to him, NIRo turns at a rate proportional to the distance the
obstacle is away from him. In other words, the closer the obstacle is to NIRo, the faster he turns away from it.

This is illustrated by the control block diagram in Figure 3. There is a desired minimum distance between
objects and NIRo. The robot wants to turn away from any object that is closer than this minimum distance.
The proportional difference between the desired minimum distance and actual distance of objects and the
actual distance measured by the sensors is used on the robot.

4 www.hi.com

Obstacle Avoidance

Control

Minimum
Allowable Distance
Objects Are From
MNIRo

Actual Distance
Objects Are From
MIRO

: Commands MIRo

Kinematic

Figure 3. Control Block Diagram for Obstacle Avoidance

The implemented code for obstacle avoidance is shown in Figure 4. Notice that, similar to Figure 3, the
actual distance objects are from NIRo is compared to the minimum desired distance these objects should be
away from NIRo. Also notice that the algorithm within the case structure in Figure 4 is similar to the obstacle
avoidance block in Figure 3. The output from the PID.vi is then used to send a command to the motors,
which causes NIRo to turn away from the nearby obstacle.

Distance objects
are Fram MIRo

i s R, B 7 ok

Mﬂdnmm-;‘I_- W Drive R (-1022, 1022)
DELHt— ¥z

b Drive L (-1022, 1022)
¥

Minirmun alloveahle
distance ohjects
are from MIRD

>

Ilzual signal ko
the motors if obstacles
are not too close

Figure 4. LabVIEW Code for Obstacle Avoidance

Motor Control (PWM)

The output from the obstacle avoidance algorithm controls the duty cycle of the PWM signal for each of the
motors. For example, if NIRo does not detect any obstacles in his path, he sends data to the FPG, which
tells the motors to move forward. This is achieved by sending the same duty cycle for both motors. If NIRo
needs to turn, the duty cycle is different for each of the motors.

The duty cycle commands are being sent from the real-time processor to the FPGA. On the FPGA, the duty
cycle commands are transferred into digital commands for the H-bridges. Each H-bridge takes four digital
signals, and the combination of these digital signals directs the current from the battery to the motor.
Depending on the digital signals sent to the H-bridge, a motor turns forward or backward or does not move at

5 www.hi.com

all.

Summary

Although NIRo is a small-scale ground robot, he uses many of the same sensors, algorithms, and techniques
common in larger and more complex robots. With LabVIEW Real-Time, LabVIEW FPGA, and

NI Single-Board RIO, developers can easily integrate hardware and software and rapidly design, develop,
and deploy algorithms. High-level decision-making algorithms and low-level motor control can all be
implemented using a single platform. By integrating commercially available off-the-shelf hardware and using
a high-level graphical programming language, you greatly reduce the complexities of developing an
autonomous robot.

6 www.hi.com

