

Application Note Please read the Important Notice and Warnings at the end of this document 002-26546 Rev. *B

www.infineon.com page 1 of 32 2021-03-23

AN226546

CYW208XX Feature and Peripheral Guide

About this document

Scope and purpose

This document introduces the CYW208XX ultra-low power, dual-mode Bluetooth v5.0 wireless MCU with an

Arm® Cortex®-M4 CPU by exploring the CYW208XX device architecture along with the development tools to
write applications using ModusToolbox™ software. To help you develop these applications, this technical guide
focuses on the use of building blocks of the device and the tools that can aid during the development of the

applications. This technical guide is intended to provide you with a brief overview of the features and

peripherals of CYW208XX.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 3

2 Resources .. 4
2.1 Hardware EVB .. 4

3 CYW208XX Bluetooth SoC .. 5

4 CYW208XX SoC Peripherals .. 6
4.1 General Purpose Input/Output (GPIO) ... 6

4.2 Analog-to-Digital Converter (ADC) .. 7

4.2.1 DC Measurement Mode .. 8

4.2.1.1 ADC Output Data and Clock .. 8

4.2.1.2 ADC Input MUX Clocking in DC Measurement Mode .. 8
4.2.1.3 ADC Sampling and Gain Calculation .. 8
4.3 Clocks ... 9

4.3.1 High-Frequency Clock Sources .. 9

4.3.2 Low-Frequency Clock Sources .. 9
4.4 Real-Time Clock (RTC) ... 10

4.5 Watchdog Timer (WDT) ... 11
4.6 Application Timer .. 11

4.7 Pulse-Width Modulator (PWM) .. 12
4.8 Random Number Generator (RNG) ... 13

4.9 Inter-Integrated Circuit (I2C) ... 13
4.9.1 I2C Clock ... 13
4.9.2 I2C Initialization ... 14

4.9.3 I2C Operations .. 14
4.9.3.1 I2C Master Write .. 14
4.9.3.2 I2C Master Read ... 14
4.9.3.3 I2C Master Combined Write and Then Read .. 14

4.10 Serial Peripheral Interface (SPI) .. 14

4.10.1 SPI Master TX-Only Operation ... 15
4.10.2 SPI Master RX-Only Operation ... 15

4.10.3 SPI Master Full-Duplex Operation ... 15
4.10.4 SPI Slave TX-Only Operation .. 16

http://www.infineon.com/

Application Note Please read the Important Notice and Warnings at the end of this document 002-26546 Rev. *B

www.infineon.com page 2 of 32 2021-03-23

AN226546

4.10.5 SPI Slave RX-Only Operation ... 16
4.10.6 SPI Slave Full-Duplex Operation .. 16

4.11 UART .. 16

4.11.1 Peripheral UART (PUART) .. 17
4.11.1.1 PUART Initialization .. 17
4.11.1.2 PUART Baud Rate .. 17

4.11.1.3 PUART Transmit .. 17

4.11.1.4 PUART Receive .. 17
4.11.1.5 PUART Flow Control .. 18
4.11.2 Host-Controller Interface UART ... 18
4.12 Keyboard Scanner (Keyscan) .. 18

5 Bluetooth Low Energy Radio Features ... 20

5.1 TX Power Control ... 20

5.2 Coexistence - SECI ... 20

6 Software .. 21
6.1 Application Code ... 21

6.2 Low-Power Capabilities .. 22

6.3 Firmware Architecture .. 22
6.4 Memory Layout .. 23

6.4.1 Significance of the *.btp File .. 24
6.5 Programming ... 24

6.5.1 File Formats .. 24
6.5.1.1 Details of *.hcd Format ... 25

6.5.1.2 Details of *.hex Format ... 26
6.5.1.3 Details of *.cgs Format .. 26

6.5.2 File Generation During Build.. 26
6.5.3 Recovery Process ... 27

6.5.4 Minidriver .. 27
6.6 Tools for Programming ... 27
6.6.1 ChipLoad .. 28

6.6.2 DetectAndId .. 28
6.6.3 Cypress Programmer ... 28

7 Summary ... 29

8 Related Documents ... 30

Revision history... 31

http://www.infineon.com/

Application Note 3 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Introduction

1 Introduction

CYW208XX is a Bluetooth 5.0-compliant SoC with support for Bluetooth Basic Rate (BR), Enhanced Data Rate

(EDR), and Bluetooth Low Energy. CYW208XX supports all optional LE features as per Bluetooth core
specification v4.2 and the LE 2 Mbps feature as per specification v5.0. Manufactured using an advanced 40-nm
CMOS low-power process, CYW208XX employs the highest level of integration to eliminate all critical external
components, thereby minimizing the device's footprint and the costs associated with implementing Bluetooth

solutions.

CYW208XX integrates a 96-MHz Arm® Cortex®-M4 CPU that offers significant processing power but still maintains

a smaller footprint. CYW208XX offers 160 KB of RAM, 16 KB of Patch RAM, 8 KB of Cache, 256 KB of on-chip
secure flash for Bluetooth applications along with 1 MB of ROM space dedicated for low-level Bluetooth stack
and drivers. CYW208XX also hosts several hardware peripheral blocks such as ADC, PWM, I2C, SPI, UART and

keyboard scanner to aid in interfacing with other components. This guide will help you to explore CYW208XX
device features and guide you in using the SoC peripherals.

Application Note 4 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Resources

2 Resources

A wealth of data is available at www.cypress.com to help you to select the right device, and quickly and
effectively integrate the device into your design. The following is an abbreviated list of resources related to this
application note:

• Overview: Bluetooth Low Energy and Bluetooth

• Product Selectors: Bluetooth Product Selector

• CYW20819 Datasheet: Describes and provides electrical specifications for CYW20819 Bluetooth SoC.

• CYW20820 Datasheet: Describes and provides electrical specifications for CYW20820 Bluetooth SoC.
CYW20820 has an integrated power amplifier, which can transmit at 10 dBm transmit power.

• IDE: ModusToolbox IDE for Bluetooth-SDK

• Application Notes: Cover a broad range of topics, from basic to advanced level.

• Code Examples: Bluetooth-SDK code examples available in GitHub repository.

• Bluetooth-SDK Documents: Up-to-date Bluetooth SDK documents, which includes firmware development,
debugging guides, test tools, library guides, and API documentation.

• Development Kits: Some examples include:

− CYW920819EVB-02 Evaluation Kit enables you to evaluate and develop single-chip Bluetooth
applications using CYW20819, an ultra-low-power dual-mode Bluetooth 5.0 wireless MCU device.

− CYW920820EVB-02 Evaluation Kit enables you to evaluate and develop single-chip Bluetooth
applications using CYW20820, an ultra-low-power dual-mode Bluetooth 5.0 wireless MCU device.

CYW20820 has an integrated power amplifier, which can transmit at 10 dBm transmit power.

− CYBT-213043-MESH EZ-BT™ Module Mesh Evaluation Kit enables you to evaluate and develop the

Bluetooth SIG mesh functionality using the EZ-BT Bluetooth 5.0-qualified module CYBT-213043-02.

2.1 Hardware EVB

Three evaluation kits are available for evaluating the CYW208XX Bluetooth SoC. You can use:

• The CYW920819EVB-02 Evaluation Kit to evaluate and develop single-chip Bluetooth applications using
CYW20819, an ultra-low-power dual-mode Bluetooth 5.0 wireless MCU device.

• The CYW920820EVB-02 Evaluation Kit to evaluate and develop single-chip Bluetooth applications using

CYW20820, an ultra-low-power dual-mode Bluetooth 5.0 wireless MCU device. CYW20820 has an integrated
power amplifier, which can transmit at 10 dBm transmit power.

• The EZ-BT Mesh Evaluation kit (CYBT-213043-MESH) to evaluate the Bluetooth SIG mesh functionality using
the CYBT-213043-02 EZ-BT Bluetooth 5.0-qualified module.

http://www.cypress.com/
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/products/ble-bluetooth
https://www.cypress.com/documentation/datasheets/cyw20820-ultra-low-power-blebredr-bluetooth-50-soc
http://www.cypress.com/products/modustoolbox-integrated-design-environment-ide
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Atechnical_documents&f%5b1%5d=resource_meta_type%3A574&f%5b2%5d=field_related_products%3A1277
https://www.cypress.com/documentation/code-examples/bluetooth-sdk-code-examples
https://github.com/cypresssemiconductorco/btsdk-docs/tree/master/docs/BT-SDK
http://www.cypress.com/microcontrollers-mcus-kits
http://www.cypress.com/CYW920819EVB-02
http://www.cypress.com/CYW920820EVB-02
https://www.cypress.com/documentation/development-kitsboards/cybt-213043-mesh-ez-bt-module-mesh-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920819evb-02-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cyw920820evb-02-evaluation-kit
https://www.cypress.com/documentation/development-kitsboards/cybt-213043-mesh-ez-bt-module-mesh-evaluation-kit

Application Note 5 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX Bluetooth SoC

3 CYW208XX Bluetooth SoC

Figure 1 shows the block diagram of the CYW208XX device. See the CYW20819 datasheet and CYW20820
datasheet for more details on the CYW208XX SoC features.

Figure 1 Block Diagram of CYW208XX Bluetooth SoC

https://www.cypress.com/datasheet/CYW20819
https://www.cypress.com/datasheet/CYW20820
https://www.cypress.com/datasheet/CYW20820

Application Note 6 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

4 CYW208XX SoC Peripherals

Hardware Abstraction Layer (HAL) drivers are available in the Bluetooth SDK to make use of several SoC
peripherals such as ADC and I2C in CYW208XX. HAL drivers in the Bluetooth SDK are blocking functions. To
know more about the API implementation in the Bluetooth SDK, click the API Documentation link in the

README.md file of wiced_btsdk or go to Github Documentation. Some of the SoC peripherals have dedicated
code examples that demonstrate the functionality of the hardware blocks and are available to use in the
Bluetooth SDK. More code examples are available in the GitHub repository.

4.1 General Purpose Input/Output (GPIO)

GPIOs are digital signal pins which can act as input or output depending on configuration at run time by the

user. The Bluetooth SDK provides GPIO drivers in wiced_hal_gpio.h. CYW208XX supports two types of GPIOs:

LHL GPIOs (up to 40) and Arm GPIOs (up to 10). The number of LHL GPIOs and Arm GPIOs available in the device
depends on the package.

• The CYW20819A1KFB1G (112-ball FBGA) device package has 40 LHL GPIOs and 6 Arm GPIOs. The
CYW20819A1KFBG (62-ball FBGA) device package has 22 LHL GPIOs available and 2 Arm GPIOs (DEV_WAKE

and HOST_WAKE). Both LHL and Arm GPIOs are enumerated in wiced_bt_gpio_numbers_t() list in

wiced_hal_gpio.h.

• The CYW20820A1KFB1G (112-ball FBGA) device package has 40 LHL GPIOs and 6 Arm GPIOs. The
CYW20820A1KFBG (62-ball FBGA) device package has 22 LHL GPIOs available and 2 Arm GPIOs (DEV_WAKE

and HOST_WAKE). Both LHL and Arm GPIOs are enumerated in wiced_bt_gpio_numbers_t() list in
wiced_hal_gpio.h.

LHL GPIOs are different from Arm GPIOs in a few ways:

• LHL GPIOs can operate in low-power modes and support muxable peripherals. Peripherals such as I2C, SPI,
PUART, and ACLK, whose functionalities can be brought out to any LHL GPIOs are said to be Super-Muxable.
See the datasheet for the list of peripherals that are Super-Muxable. LHL GPIOs are the ones usually used by

most user applications.

• Arm GPIOs can operate only in active mode and they do not support muxable peripherals. DEV_WAKE,

HOST_WAKE, and four BT_GPIOs are the Arm GPIOs available in the CYW20819A1KFB1G package, whereas
DEV_WAKE and HOST_WAKE are the Arm GPIOs available in the CYW20819A1KFBG package. The DEV_WAKE
can be used to wake the Bluetooth device with a signal from the host. The HOST_WAKE signal can be used to

wake the host device with a signal from the Bluetooth device. BT_GPIOs can be configured as a GCI (Global

Co-existence Interface) pin.

CYW208XX supports the following GPIO capabilities in Bluetooth SDK:

• Input/Output selection

• Pull-up/Pull-down selection

• Drive strength selection

• Hysteresis control

• Level/Edge triggered interrupt selection

The following are some of the most commonly used GPIO APIs and their descriptions:

• The wiced_hal_gpio_configure_pin() API is used to configure the GPIO capabilities on a specific

GPIO.

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/index.html
https://github.com/cypresssemiconductorco/Code-Examples-BT-SDK-for-ModusToolbox
https://www.cypress.com/datasheet/CYW20819

Application Note 7 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

• The wiced_hal_gpio_register_pin_for_interrupt() can be used to register an interrupt for

GPIOs and based on edge or level changes it will trigger the callback function (i.e., interrupt service routine

or interrupt handler).

• The wiced_hal_gpio_clear_pin_interrupt_status() should be used to clear the interrupt in

the GPIO interrupt callback function.

• The wiced_hal_gpio_select_function() API can be used to map the functionality to specific pins

(see the following code snippet as an example on how to use it). The first parameter to this function refers to
the GPIO pin (wiced_bt_gpio_numbers_t) and the second parameter refers to the GPIO functionality

(wiced_bt_gpio_function_t).

wiced_hal_gpio_select_function (WICED_P03, WICED_PWM0);

For more details on these GPIO APIs, click Components > Hardware Drivers > GPIO and navigate to GPIO API

reference in WICED API Reference Guide.

Though the SDK offers to configure all I/Os, the selection of pins in an application needs to be made based on

the following constraints with respect to the device:

• Certain functionalities (for example, ADC input) are supported only on specific LHL I/Os and cannot be

routed to other pins. See the Pin Assignments and GPIOs section in the datasheet for more details.

• GPIOs such as P26, P27, P28, and P29 can drive higher current compared to other pins. See the datasheet

for more details.

4.2 Analog-to-Digital Converter (ADC)

The ADC block in CYW208XX is a single-ended switched-capacitor sigma-delta ADC with 12 bits for Audio1

measurements and 10 bits for DC measurements. The ADC has 32 DC input channels including 28 GPIO inputs.

The ADC does not support Super-Muxing capability. For more details on the ADC APIs described, click

Components > Hardware Drivers > Analog-to-Digital Converter (ADC) and navigate to ADC API reference in
WICED API Reference Guide.

• The following 15 pins can be programmed as ADC inputs in CYW20819A1KFBG / CYW20820A1KFBG (62-ball

FBGA):

− P0, P1, P8-P15, P17, P28, P29, P32, P37

• The following 28 pins can be programmed as ADC inputs in CYW20819A1KFB1G / CYW20820A1KFB1G (112-

ball FBGA):

− P0, P1, P8-P19, P21-P23, P28-P38

The Bluetooth SDK provides APIs to read voltage/raw samples of VDDIO (Input / Output Voltage), VDD_CORE
(Core Voltage), ADC_BGREF (Band-gap reference), and ADC_REFGND (Reference ground) in wiced_hal_adc.h.

See the ADC Electrical Characteristics in the datasheet for more details.

CYW208XX supports two modes of operation: DC measurement mode and Audio1 mode. For Audio1
applications, the ADC uses a Programmable-Gain Amplifier (PGA) to control the gain.

1 The micn and micp pins are not available in CYW20819A1KFBG/CYW20820A1KFBG (62-ball FBGA) but are available in CYW20819A1KFB1G/CYW20820A1KFB1G (112-ball FBGA).

DMA is available only for audio mode; DMA handling is done by ROM firmware. Audio mode is currently supported only in the HID profile library of the Bluetooth SDK. The ROM

firmware takes care of handling HID voice commands.

https://www.cypress.com/datasheet/CYW20819
https://www.cypress.com/datasheet/CYW20819
https://www.cypress.com/datasheet/CYW20819

Application Note 8 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

4.2.1 DC Measurement Mode

The DC Measurement mode refers to single-ended voltage measurement on an input pin referenced to the ADC
ground. From the ADC’s block diagram, 28 GPIO channels, VDDIO, VDD_CORE, ADC_BGREF, and ADC_REFGND

are multiplexed and fed into the switched-capacitor sigma-delta ADC.

The wiced_hal_adc_init() function initializes the necessary registers required for ADC operation in DC

measurement mode. The ADC needs to be re-initialized if it has been powered down in specific low-power
modes.

4.2.1.1 ADC Output Data and Clock

The ADC clock input is 24 MHz, which is divided internally to 12 MHz in the ADC hardware. The typical

conversion rate is 100 kHz and the minimum conversion rate is 50 kHz for static measurements of the ADC. The
practical time for reading DC voltages after ADC initialization is approximately 150 microseconds. Similarly, the

practical time for reading DC raw samples from the ADC is approximately 50 microseconds. The reduction in

conversion rate is because the raw sample read function does not do any post processing on the samples,
whereas when reading voltages, the firmware does move average filtering (low-pass FIR) on the sampled values
for better accuracy. This conversion rate roughly translates to a range between 16 ksps and 20 ksps.

4.2.1.2 ADC Input MUX Clocking in DC Measurement Mode

The ADC requires up to 2 microseconds to settle after switching of the DC input channels. It takes
approximately 20 microseconds for the ADC REF to settle after powering up the ADC. The acquisition time for
DC measurement mode is 10 µs. This is handled internally by the API functions. The ADC_DC_MUX_clk is the

timing clock on the digital side to synchronize the DC input channel switching and measurement. Figure 2

shows the MUX clocking and timing.

Figure 2 Mux Clocking and Timing Diagram of ADC

4.2.1.3 ADC Sampling and Gain Calculation

The wiced_hal_adc_read_voltage() API function allows the program to read the analog voltage from

the ADC. The ADC must be initialized before reading the voltage or else the function will return ‘0’. All read
function calls to ADC registers are blocking. The ADC input and ADC output gain relationship in DC

measurement mode can vary due to the supply voltages (ADC_AVDDBAT, MIC_AVDD, VDDC). For changes in
supply voltages, the following API functions must be invoked to get more accurate ADC samples. These
functions, when invoked, recalibrate the internal band gap and reference voltages.

Application Note 9 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

• When the supply voltage is set to 1.8 V, use
wiced_hal_adc_set_input_range(ADC_RANGE_0_1P8V).

• When the supply voltage is set to 3.3 V, use
wiced_hal_adc_set_input_range(ADC_RANGE_0_3P6V).

4.3 Clocks

CYW208XX has multiple clock dividers and PLLs routed to several high-speed and low-speed peripherals. The
figure below shows the simplified clock tree in CYW208XX.

The basic source for all the high-frequency clocks in CYW208XX is the 24-MHz external crystal (xtal). This is

supplied to the ADPLL, which converts the frequency to 96 MHz. This clock is then supplied to most of the

peripherals in the CYW208XX device like the Bluetooth core and CPU. Some peripherals like PWM can also take

the 24-MHz clock directly. These peripherals have internal dividers that can divide the input clock according to
its requirement.

The low frequency clock is 32 kHz and can be derived from multiple sources. See Low-Frequency Clock Sources
for more details.

4.3.1 High-Frequency Clock Sources

The high-frequency clocks are derived from an external 24-MHz crystal oscillator using internal PLLs to upscale
the frequency. These frequencies are determined by the hardware automatically, and are not user-
configurable:

• HCLK: This clock powers the Resource Processing Unit (RPU). The RPU includes the CM4 CPU and DMA
Controller. HCLK's frequency can range from 1 MHz to 96 MHz.

• Bluetooth Core Clock: This clock powers the Bluetooth RF hardware. The Bluetooth Core clock frequency

can range from 1 MHz to 48 MHz.

• PTU Clock: This clock powers the Peripheral Transport Unit (PTU), which includes SPI, I2C, UART, PCM, and
Random Number Generator. The PTU clock frequency can either be 24 MHz or 48 MHz. The peripherals will
internally divide the clock frequency for their specific purpose. For example, the I2C master clock (SCL) can

range from 100 kHz to 1 MHz.

• Timer Clock: The application timer (dual-input 32-bit timers) is clocked at 1 MHz.

4.3.2 Low-Frequency Clock Sources

The 32-kHz low-frequency clock (lhl_lpo_32kHz on the following figure) can be obtained from multiple sources.

There are two internal low-power oscillators (LPOs) called the LP-LPO and HP-LPO and external crystal

(OSC32K). The firmware determines the clock source to use among the available LPOs depending on the

accuracy and power requirements. The preferred source is the external LPO (OSC32K) because it has good
accuracy with the lowest current consumption. Internal LP-LPO has low current consumption and low accuracy
whereas HP-LPO has higher accuracy and higher current consumption. The firmware assumes the external LPO

has less than 250 PPM error with little or no jitter.

Application Note 10 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

XTAL 24M ADPLL

DIV N HCLK48/96M

DIV N
48M

PTU
24M

DIV N Timers1M

I2C

SPI1

PUART

ADC
(12M)

PWM(0-5)

OSC32K
LPO

HP-LPO
LPO

lhl_lpo
32K

LP-LPO
LPO

LHL

RTC

DIV N 1M

24M

SPI2

HCI UART

Variable
Frequency

Fixed
Frequency

Block

ACLK0

ACLK1

24M

CPU

Figure 3 Clock Diagram of CYW208XX

4.4 Real-Time Clock (RTC)

CYW208XX supports a 48-bit RTC timer running on the 32-kHz crystal (XTAL32K) LPO. RTC supports a clock input
from either an external or internal LPO. If an external LPO is not connected to CYW208XX, the firmware takes

the clock input from the internal LPO for the RTC. The RTC timer is represented in the structure
wiced_rtc_time_t with members representing seconds, minutes, hour, day, month and year. By default,

the date and time are set to January 1, 2010 with a time of 00:00:00 denoting HH: MM: SS.

The Bluetooth SDK provides API functions to:

• Set the current time (wiced_set_rtc_time()).

• Get the current time (wiced_rtc_get_time()).

• Convert the current time value to a string (wiced_rtc_ctime()).

Application Note 11 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

For more details on RTC APIs described above, click Components > Hardware Drivers > RTCDriver and
navigate to RTCDriver API reference in the Bluetooth-SDK Documentation page.

4.5 Watchdog Timer (WDT)

The Watchdog Timer module in CYW208XX is based on a 32-bit down counter that is used to detect and recover
from malfunctions. During normal operation, the device regularly resets the watchdog timer before the count
value reaches zero to prevent it from elapsing, or timing out. If, due to a hardware fault or program error, the
device fails to reset the watchdog, the timer will elapse and generate a system reset on time out. The process of

resetting the watchdog timer’s counter is referred to as “petting the dog”. The default watchdog timeout is set

to 2 seconds and watchdog petting is done in the idle thread. Production applications need not pet the
watchdog. Any application that attempts to hold the CPU longer than 2 seconds will trigger the watchdog and
reboot the system. To disable the watchdog timer, the wiced_hal_wdog_disable() API is available in

wiced_hal_wdog.h.

The Bluetooth SDK provides limited debugging functionalities via the watchdog timer using wiced_hal_wdog.h.
When the watchdog timer expires, the system will reset after a core-dump. The core-dump contains the
following information: device firmware or hardware version, warning-flag, memory info, CPU/HW registers,

SRAM, and Patch RAM image. The core dump is sent over the HCI-UART as Bluetooth-HCI vendor-specific

events.

4.6 Application Timer

CYW208XX provides one general-purpose 32-bit dual-input timer. The firmware uses the 2 x 32-bit timers as a 1
x 64-bit timer. The Bluetooth SDK provides APIs to use the timer functionality in wiced_timer.h. At first, the

application timers should be initialized to a specific seconds or milliseconds timer value, then the timer should

be started and upon reaching the timeout, the callback function is executed. This callback function can hold

any application code like LED blinking, serial data transfer, reading RTC value, reading ADC samples, and so on.
The timer supports two modes of operation:

• Periodic Interrupt mode

• Single-shot mode

The Bluetooth SDK provides four timer types:

• WICED_SECONDS_TIMER

• WICED_MILLI_SECONDS_TIMER

• WICED_SECONDS_PERIODIC_TIMER

• WICED_MILLI_SECONDS_PERIODIC_TIMER

The two periodic timers trigger the timer callback function every time the timer count reaches zero (down

counter) whereas the other two timers are single-shot. The timer callbacks execute only once and exit on every
timer expiration. Some of the APIs which can help to get started with Timer APIs are as follows:

• The wiced_init_timer() function initializes the timer. It allows you to specify the callback function to

be invoked when the timer expires. This function also allows you to specify the type of timer that should be
used. This function does not start the timer.

• The wiced_start_timer() function is used to start the count down and to specify the count value. The

wiced_stop_timer() function can be used to stop the timer.

• The wiced_is_timer_in_use() function allows you to know if the specified timer is currently in use by

returning a Boolean value.

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API

Application Note 12 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

For more details on these Application Timer APIs, click Components > Hardware Drivers > Timer
Management Services and navigate to Timer API reference in WICED API Reference Guide.

Here is a sample code snippet to use the application timer:

wiced_timer_t my_timer_handle; /* Typically defined as a global */

.

.

/* Typically, inside the BTM_ENABLED_EVT */

wiced_init_timer (&my_timer_handle,

 myTimer,

 0,

 WICED_MILLI_SECONDS_PERIODIC_TIMER);

wiced_start_timer (&my_timer_handle, 100);

.

. .

/* The timer function */

void myTimer (uint32_t arg)

{

/* Put timer code here */

}

4.7 Pulse-Width Modulator (PWM)

There are six 16-bit Hardware PWM channels available in CYW208XX, which support the Super-Muxable
functionality. The wiced_hal_pwm.h file in the Bluetooth SDK defines PWM-specific drivers. LHL_CLK or
PMU_CLK can be used as the clock source for each PWM channel. If the clock source is LHL_CLK, the clock

frequency will be 32 kHz. PMU_CLK requires an auxiliary clock to be configured first. When configuring the

auxiliary clock, ACLK0 is not available for use with the PWMs. Therefore, ACLK1 is the only available PMU_CLK

running at 24 MHz or 1 MHz (using internal clock division). Each PWM channel can be routed to GPIO pins using
the SuperMUX. The wiced_hal_gpio_select_function() is used to map any LHL GPIO to the specified

PWM channel (WICED_PWM<x>) where ‘x’ represents the PWM channels. Glitches may occur during runtime

change of PWM configuration parameters. This API was explained earlier in General Purpose Input/Output

(GPIO). For more details on PWM APIs, clickn Components > Hardware Drivers > Pulse Width Modulation
(PWM) and navigate to PWM API reference in the Bluetooth-SDK Documentation page.

• The wiced_hal_aclk_enable() function in wiced_hal_aclk.h enables the auxiliary clock and allows the

functionality of choosing either 1 MHz or 24 MHz for routing to the PWMs.

• Note: CYW20820 does not support ACLK at 1 MHz as of Bluetooth SDK 1.3.

• The wiced_hal_pwm_start() function configures, enables, and starts the PWM and also routes it to a

preconfigured GPIO pin. The desired GPIO pin must be configured as an output before assigning it for use
with a PWM. This function takes in five parameters (i.e., channel, clock source, toggle count, initial count,
and invert signal).

− The channel refers to PWM channels 0 to 5.

− The clock source can be either LHL_CLK or ACLK1 (PMU_CLK).

− The toggle count refers to the number of ticks to wait before toggling the signal.

− The initial count is the initial value of the register.

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API

Application Note 13 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

− The invert signal can be either 1 or 0. If the invert signal is 1, the PWM output starts at logic HIGH and if
the invert signal is 0, the PWM output starts at logic LOW.

• The wiced_hal_pwm_change_values() function changes the PWM settings such as toggle count and

initial count of a specific PWM channel after the PWM hardware block has already been started.

• The wiced_hal_pwm_get_params() is a utility function that calculates the PWM parameters. This

function takes in three parameters: input clock frequency, duty cycle, and desired PWM output frequency to
determine the required initial count and toggle count. The initial count and toggle count are determined by
the function using the following expression:

− Initial count = 0xFFFF - (Input clock frequency/PWM frequency output)

− Toggle count = 0xFFFF - ((duty cycle in percentage) x (Input clock frequency/PWM frequency output)/ 100)

4.8 Random Number Generator (RNG)

The Bluetooth SDK provides an API to use the RNG hardware module. It provides functions to generate either a

single 32-bit random number or fill a given array with 32-bit random numbers. These functions are useful for
security-related applications such as authentication. These functions generate random numbers from an input
called a “seed” that is taken from either the generating hardware block’s temperature when it is warm or from
the Bluetooth clock when it is cold. The wiced_hal_rand.h file defines functions such as

wiced_hal_rand_gen_num() to generate a 32-bit random integer and

wiced_hal_rand_gen_num_array() to fill a given array with randomly generated 32-bit integers. The

RNG hardware block takes 1 ms to generate random numbers (either a single number or an array) including the
warm-up time. For more details on RNG APIs, click Components > Hardware Drivers > Random Number
Generator (RNG) and navigate to PWM API reference in the Bluetooth-SDK Documentation page.

4.9 Inter-Integrated Circuit (I2C)

CYW208XX provides one I2C-compatible Master interface to communicate serially with I2C Slave devices. The

I2C block supports the Super-Muxable functionality.

The I2C module features include support for:

• 7-bit addressing mode

• Clock stretching as a Master

• SCL clock frequencies: 100 kHz (Standard Mode), 400 kHz (Fast Mode), 800 kHz (Proprietary), and 1 MHz (Fast

Mode+)

• Multi-slave operation

4.9.1 I2C Clock

The I2C clock (SCL) is provided by the Master on the I2C bus. When the I2C module is in Master mode, the serial
clock generator generates the SCL clock from the transport clock of 24 MHz. The
wiced_hal_i2c_set_speed() function allows you to set the clock rate of SCL to any of the speeds listed

in the introduction. The I2C block has 64 bytes of RX and TX FIFO for the transaction buffer, and thus each I2C

transaction payload can be a maximum of 64 bytes.

The following enum constants are provided in wiced_hal_i2c.h to set the desired SCL clock frequency:

• I2CM_SPEED_100KHZ

• I2CM_SPEED_400KHZ

• I2CM_SPEED_800KHZ

• I2CM_SPEED_1000KHZ

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API

Application Note 14 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

For example, the enumerated value of I2CM_SPEED_100KHz is set to 240, which is the dividing parameter,

that is, when 24,000,000 divided by 240, it results in 100 kHz. Trying to use Multi-master will result in undefined

behavior because the clocks from two or more masters will not be synchronized. Also, note that the proprietary
800-kHz mode is not expected to work with all I2C Slaves. The wiced_hal_i2c_get_speed() function

allows you to get the current clock frequency of the I2C block.

4.9.2 I2C Initialization

I2C module registers are initialized by calling wiced_hal_i2c_init(), which is defined in wiced_hal_i2c.h.

This function call initializes the I2C driver and its private values. You must call this function before using I2C
because some modules will turn the block OFF for power saving. This function call ensures that the clock signal

to the hardware block is turned on with the default SCL clock frequency of 100 kHz. Therefore, the
wiced_hal_i2c_set_speed() function must be called after the wiced_hal_i2c_init() function if

you want to use a speed other than 100 kHz.

4.9.3 I2C Operations

The I2C Master module supports three operations: master write, master read, and combined write followed by

read. These operations are discussed in the following sections.

4.9.3.1 I2C Master Write

The wiced_hal_i2c_write() function writes data to a specific Slave address. Although any arbitrary

length of data may be written to the Slave, atomic transactions greater than the hardware's capability are not

possible and the data will be split into multiple transactions. This is a blocking call. When the I2C slave device

acknowledges a successful I2C master write operation, the function returns I2CM_SUCCESS, and if the I2C

master does not receive any acknowledgement from the I2C slave, the function returns I2CM_OP_FAILED.

4.9.3.2 I2C Master Read

The wiced_hal_i2c_read() function reads data from a particular Slave address register into the given

buffer. This is a blocking call. This I2C function returns I2CM_OP_FAILED when there is NACK (No

Acknowledgement) from the I2C slave device or when the I2C slave returns 0 bytes. For more details, see the

Bluetooth-SDK Documentation.

4.9.3.3 I2C Master Combined Write and Then Read

The wiced_hal_i2c_combined_read() function executes a write transaction followed by a read

transaction with a repeated start condition between the transactions. In the first transaction, data is written to

the Slave address and after the repeated start, data is read from the Slave in the second transaction. This
operation is usually used to read a Slave device's registers with the first write transaction specifying the Slave's

register address that needs to be read. This I2C function returns I2CM_OP_FAILED when there is NACK (No

Acknowledgement) from the I2C slave device or when the I2C slave returns 0 bytes.

4.10 Serial Peripheral Interface (SPI)

CYW208XX contains two SPI blocks used to communicate with other SPI Master and Slave devices. The
CYW208XX SPI interface supports the Super-Muxable functionality. This block can be used to communicate with
SPI-based sensors such as temperature sensors and motion sensors. SPI blocks support the following features:

• Three-wire (Master) and four-wire (Master and Slave) SPI interface

• Master and Slave modes

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API

Application Note 15 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

• Configurable SCK polarity and phase

• Configurable LSB- or MSB-first transfer

1024-byte transmit buffer and 1024 byte receive buffer for SPI 12 (shared with HCI UART)

• 64-byte transmit buffer and 64-byte receive buffer for SPI 22 (shared with PUART)

CYW208XX provides functions to choose between two SPI hardware blocks. spi_interface_t allows you to

choose between SPI1 and SPI2. Each SPI Utility function will have an argument to choose between the two

SPI blocks.

The SPI block can be used as a generic Master or a generic Slave. Any LHL GPIOs can be used for the SPI

interface. The Bluetooth SDK provides a list of parameters and functions to access the SPI driver. For more
details on SPI APIs, click Components > Hardware Drivers > PeripheralSpiDriver and navigate to SPI API

reference in the Bluetooth-SDK Documentation page.

The SPI block can be initialized in the required configuration using the wiced_hal_pspi_init() function.

In generic Master mode, it is up to the firmware to assert the CS to various peripherals. The CS and INT pins can

be used as GPIOs when in Master mode. The SPI clock and pins can be changed during application runtime
when there is no activity in the SPI block. There are three types of Master transactions and two types of Slave

transactions as described below.

4.10.1 SPI Master TX-Only Operation

When data only needs to be sent, the SPI block is in TX-Only mode. In this mode:

• TxFIFO must be enabled

• RxFIFO must be disabled

In this configuration, the SPI block will transmit any data placed in the TxFIFO. The
wiced_hal_pspi_tx_data() function is used to place the data in the TxFIFO to transmit the data as a

Master.

When the TxFIFO becomes empty, SPI_CLK is paused at a byte boundary until more data is placed in the TxFIFO

using the wiced_hal_pspi_tx_data() function. No data is received in the RxFIFO.

4.10.2 SPI Master RX-Only Operation

When data only needs to be received, the SPI block is in RX-Only mode. In this mode:

• TxFIFO must be disabled

• RxFIFO must be enabled

In this configuration, the SPI block will retrieve specified bytes of data from the Slave. The
wiced_hal_pspi_rx_data() function is used to receive the data as a Master.

The data stream will be paused if the RxFIFO becomes full. The data stream will resume when there is space in
the RxFIFO. No data is sent in this mode.

4.10.3 SPI Master Full-Duplex Operation

When data needs to be sent and received simultaneously, the SPI block is in full-duplex mode. In this mode:

2 The SPI 1 block and HCI UART use the same buffer, so they cannot be used at the same time. The SPI 2 block and PUART use the same buffer, so they cannot be used at the

same time.

Application Note 16 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

• TxFIFO is enabled

• RxFIFO is enabled

In this configuration, the SPI block will transfer data to/from both FIFOs if there is:

• Space in RxFIFO

• Data in TxFIFO

If either of these conditions becomes false, SPI_CLK is paused until both conditions become true again. The

wiced_hal_pspi_exchange_data() function can be used to send and receive data simultaneously.

4.10.4 SPI Slave TX-Only Operation

As a generic slave, data is transferred to the host when:

• There is data in the TxFIFO

• The TxFIFO is enabled

• The host toggles SPI_CLK and SPI_CSN is asserted

If condition (1) is false, but conditions (2) and (3) are true, a data underflow condition occurs. The

wiced_hal_pspi_slave_tx_data() function can be used to put the data in the TxFIFO.

4.10.5 SPI Slave RX-Only Operation

As a generic slave, data is received from the host when:

• There is space in the RxFIFO

• The RxFIFO is enabled

• The host toggles SPI_CLK and SPI_CSN is asserted

If condition (1) is false, but conditions (2) and (3) are true, a data overflow condition occurs. The
wiced_hal_pspi_slave_rx_data() function can be used to receive the data.

4.10.6 SPI Slave Full-Duplex Operation

When data needs to be sent and received simultaneously, the SPI block is in full-duplex mode. In this mode:

• TxFIFO is enabled

• RxFIFO is enabled

In this configuration, the SPI block will transfer data to/from both FIFOs if there is:

• Space in RxFIFO

• Data in TxFIFO

To send and receive data simultaneously, enable the Tx and Rx buffers, use the
wiced_hal_pspi_slave_tx_data() API to place data in the buffer and read the data from the Rx buffer

using wiced_hal_pspi_slave_rx_data() after the Master transfers the data.

4.11 UART

This device has two UART blocks: Peripheral UART (PUART) and HCI UART (Bluetooth UART)

Application Note 17 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

4.11.1 Peripheral UART (PUART)

CYW208XX’s PUART can be used as a generic Tx/Rx UART block in addition to the debug printing functions.
CYW208XX can map the peripheral UART to any LHL GPIOs. PUART is clocked at 24 MHz with configurable baud

rate and parity3. Both PUART RX and PUART TX have a 256-byte FIFO.

PUART has the following features:

• 8-bit transfer up to 3 Mbps

• 9-bit transfer including stop bit up to 2.5 Mbps

• Configurable flow control

• Interrupt functionality on receive operation

4.11.1.1 PUART Initialization

The wiced_hal_puart_init() function defined in wiced_hal_puart.h is used to initialize the PUART

block.

The wiced_hal_puart_select_uart_pads() function can be used to select TX/RX and optional

CTS/RTS pins for the PUART hardware to use.

4.11.1.2 PUART Baud Rate

The wiced_hal_puart_set_baudrate() function is used to set the baud rate. The default PUART baud

rate is 115200. Typical baud rates include 115200, 921600, 1500000, and 3000000 bps, although intermediate
speeds are also available. For more details on the baud rate, see the datasheet.

4.11.1.3 PUART Transmit

The wiced_hal_puart_enable_tx() and wiced_hal_puart_disable_tx() functions enable or

disable transmit capability of the PUART, respectively. To send data over PUART, transmit must be enabled.

The wiced_hal_puart_print() function is used to send a string of characters via the TX line.

The wiced_hal_puart_write() function is used to send one byte via the TX line.

4.11.1.4 PUART Receive

The wiced_hal_puart_enable_rx() function is used to enable receive capability.

The wiced_hal_puart_rx_fifo_not_empty() function is used to check if there is any data available in

the RX FIFO.

The wiced_hal_puart_register_interrupt() function provides an interrupt callback on receive of

data.

For receiving data, register an interrupt callback function, set the watermark to determine how many bytes
should be received before an interrupt is triggered, and enable Rx. A code snippet for receiving data on PUART

is given below.

wiced_hal_puart_register_interrupt(rx_interrupt_callback);

/* Set watermark level to 1 to receive interrupt up on receiving each byte */

3 Subject to availability of drivers in Bluetooth SDK. As of Bluetooth SDK v1.3, the SDK does not support parity selection.

https://www.cypress.com/datasheet/CYW20819

Application Note 18 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

wiced_hal_puart_set_watermark_level (1);

wiced_hal_puart_enable_rx ();

The Rx processing is done inside the interrupt callback function. The PUART interrupt must be cleared inside
the callback function to receive additional characters.

void rx_interrupt_callback (void* unused)

{

uint8_t readbyte;

/* Read one byte from the buffer and then clear the interrupt */

wiced_hal_puart_read (&readbyte);

wiced_hal_puart_reset_puart_interrupt ();

/* Add your processing here */

}

4.11.1.5 PUART Flow Control

The wiced_hal_puart_flow_on() and wiced_hal_puart_flow_off() functions enable or disable

flow control on the PUART, respectively.

4.11.2 Host-Controller Interface UART

This UART is used for HCI transport for controller mode and is also used for programming the device. The HCI
UART signals are fixed to specific I/O pads. DMA is used for HCI UART packets when the length of the data to be

received is greater than around 64 bytes.

To understand the programming sequence over the HCI UART interface, see WICED-HCI-Control-Protocol.pdf in

the GitHub btsdk-docs repository.

4.12 Keyboard Scanner (Keyscan)

The keyboard scanner is a matrix scanner hardware peripheral which can process key press and release events

from the GPIOs. The keyboard scanner is implemented as a firmware queue on top of a Hardware FIFO. For the
architecture of the keyboard scanner, see Figure 4.

https://github.com/cypresssemiconductorco/btsdk-docs/tree/master/docs/BT-SDK

Application Note 19 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

CYW208XX SoC Peripherals

Figure 4 Keyboard Scanner for CYW208XX

Following are the specifications for the keyboard scanner hardware block:

• The maximum number of rows (Key Scan Inputs (KSIs)) that can be configured is 8.

• The maximum number of columns (Key Scan Outputs (KSOs)) that can be configured is 20.

• All the column pins to the keyboard scanner are Super-Muxable.

• The keyboard scanner block samples the entire 160 keys at 128 KHz.

• Hardware debouncing and ghost key detection are available.

The keyboard scanner in CYW208XX is designed to autonomously sample keys and store them into buffer
registers without the need for the host microcontroller to intervene. Key up/down events are a byte stream

coming from the API driver. The ROM firmware takes care of the state machine handling of the keyboard
scanner hardware. The state machine begins in idle state and will enter scan state if any key is pressed. During
the scan state, a row counter counts from 0 to programmable number of rows minus 1 and programmable

number of columns minus 1. See the CYW208xx datasheet to know the maximum number of rows and columns

that are available in the specific package.

The APIs needed for configuring and utilizing the Keyboard scanner are available in wiced_hal_keyscan.h. The
Keyboard scanner API provides the functions for following capabilities:

• Configures the number of rows and columns for the keyboard scanner

• Checks for any new key press events and pending key press events

• Enables/disables ghost key detection

• Resets the keyboard scanner hardware block

• Provides wake up source for the device

See the API reference guide for more details on the function prototypes and parameters. The application
developer can use the device configurator tool in the ModusToolbox to configure the keyboard scanner
hardware.

Application Note 20 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Bluetooth Low Energy Radio Features

5 Bluetooth Low Energy Radio Features

This section describes some of the Bluetooth Low Energy radio features available in CYW208XX. The CYW208XX
devices provide a highly integrated low-power 2.4-GHz radio transceiver with support for multiple modulations
and packet formats. CYW20820 adds an integrated power amplifier which can transmit at 10 dBm transmit

power. The MCU subsystem provides an interface between the peripherals and the radio, which makes it
possible to issue commands, read status, and automate and sequence radio events. The Arm Cortex-M4
processor handles the data to and from the analog RF and baseband circuitries and assembles the information
bits in a given packet structure.

5.1 TX Power Control

CYW20819 has a maximum power output is +4dbm for class 2 operation. It supports TX power from +4dBm to -

16dBm. The resolution is 4dBm, that is, the configurable TX power levels are {+4 dBm, 0 dBm, -4 dBm, -8 dBm, -
12 dBm, -16 dBm}.

CYW20820 has an internal power amplifier with a maximum power output of +10dbm for class 2.5 operation. It
supports TX power from +4dBm to -24dBm. The resolution is 4dBm, that is, the configurable TX power levels are

{+4 dBm, 0dBm, -4 dBm, -8 dBm, -12 dBm, -16 dBm, -20 dBm, -24 dBm}.

The Bluetooth SDK provides the following function for controlling the TX power:

• wiced_bt_set_tx_power(): This function defined in wiced_bt_dev.h can be used to set the TX power

on data channels for a particular connection. It takes the peer device’s BD (Bluetooth Device) address as an
input parameter. This API can also be used to set the TX power on Advertisement channels by passing the

BD_ADDR as 0.

5.2 Coexistence - SECI

Serial Enhanced Coexistence Interface (SECI) is a proprietary Cypress interface in Cypress-to-Cypress

Coexistence solutions. The WICED_GCI_SECI_IN and WICED_GCI_SECI_OUT functionality need to be

routed to any of the available GPIOs in CYW208XX. The wiced_bt_coex_enable() and

wiced_bt_coex_disable() functions defined in wiced_bt_dev.h allow you to enable and disable the

Coexistence interface. See AN214852 for Coexistence interfaces and how to use them with CYW208XX.

https://www.cypress.com/documentation/application-notes/an214852-collaborative-coexistence-interface-between-cypress-cypress

Application Note 21 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

6 Software

This section describes the application code build and download process in CYW208XX Bluetooth devices.

6.1 Application Code

All Bluetooth wireless systems work the same basic way. The programmer writes the application firmware that
calls Bluetooth APIs in the network stack. The stack then talks to the radio hardware, which in turn sends and

receives data. When an event happens in the radio hardware, the stack will initiate actions in the application
firmware by creating events (for example, when it receives a message from the other side of the Bluetooth
connection). The application code is responsible for processing these events that are pushed up by the stack

and doing the necessary post processing for each event. The ROM is preprogrammed with a boot sequence,

device driver functions, low-level protocol stack components, and a bootloader. The ROM firmware in

CYW208XX handles the Bluetooth stack activities and processes the radio events. The ROM firmware works like
a Finite-State Machine (FSM) in handling the Bluetooth events. As an application developer, you can ignore the

low-level Bluetooth functionalities.

A minimal C file for an application will look something like this:

#include "wiced.h"

#include "wiced_platform.h"

#include "sparcommon.h"

#include "wiced_bt_dev.h"

/***************************** Function Prototypes *******************/

wiced_result_t bt_cback (wiced_bt_management_evt_t event,

wiced_bt_management_evt_data_t *p_event_data);

/***************************** Functions *****************************/

/* Main application. This just starts the Bluetooth stack and provides the

callback function.

* The actual application initialization will happen when stack reports that

Bluetooth device is

* ready.

*/

APPLICATION_START ()

{

/*Add initialization required before starting Bluetooth stack here */

wiced_bt_stack_init (bt_cback, NULL, NULL); /* Register Bluetooth stack

callback */

}

/* Callback function for Bluetooth events */

wiced_result_t bt_cback (wiced_bt_management_evt_t event,

wiced_bt_management_evt_data_t *p_event_data)

{

wiced_result_t result = WICED_SUCCESS;

switch (event)

{

Application Note 22 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

/* Bluetooth stack enabled */

case BTM_ENABLED_EVT:

/* Initialize and start your application here once the Bluetooth

stack is running */

break;

default:

break;

}

return result;

}

The purpose of an RTOS is to reduce the complexity of writing embedded firmware that has multiple

asynchronous, response-time critical tasks that have overlapping resource requirements. The RTOS maintains
a list of tasks known as threads that are in different states such as active, inactive, or scheduled, and executes
these tasks based on their priorities. Multi-threaded applications that make use of SoC peripherals should

handle thread synchronization in the application when there are resource conflicts such as shared memory,
mutual exclusion, hold and wait, and circular wait.

The RTOS in the ROM firmware creates multiple threads immediately after the bootup for handling the

Bluetooth functionality and then gives control to the application thread. Currently, ModusToolbox supports
multiple RTOSs. The device ROM has ThreadX by Express Logic built in and the license included, which makes
this the best choice for developing applications with CYW208XX. To simplify using multiple RTOSs, the

Bluetooth SDK has a built-in abstraction layer that provides a unified interface to the fundamental RTOS

functions. You can find the documentation for the WICED RTOS APIs in Components > RTOS in the Bluetooth-
SDK Documentation page.

6.2 Low-Power Capabilities

AN225270 provides guidelines on designing and developing a low-powered application using CYW208XX and
the parameters to consider for a power-efficient design.

6.3 Firmware Architecture

The CYW208XX device can either be used in controller mode or embedded mode.

In controller mode, the CYW208XX device runs the Bluetooth controller stack and the Bluetooth host stack is
run on an external host MCU. The CYW208XX device uses the Host Controller Interface (HCI) to communicate

with the host controller.

In embedded mode, both the Bluetooth host stack and the controller stack are run on the CYW208XX device. All
the components of the controller stack and most of the components in the host stack reside in the device ROM.
The user application, which can call APIs to access the ROM code, is programmed into the flash. If no code is

programmed into the flash and the device is powered ON, it behaves like a Bluetooth controller that is
controlled by HCI.

The CYW208XX device uses “patches” to ROM code to modify the behavior and fix bugs. These patches can be

built into a core patch file (called general patch in the remaining part of this document) that is included in all
ModusToolbox builds, or they can be built into optional patch libraries (called patch libraries in the remaining

part of this document) that are application-specific, such as patches that pertain to audio or mesh network

https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/208XX-A1_Bluetooth/API
https://www.cypress.com/an225270

Application Note 23 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

applications only. This approach optimizes the use of RAM by using only the patch libraries that are needed for
a given application.

Cypress Bluetooth devices support Over-The-Air (OTA) updates of the application code. More details on OTA
can be found in the WICED-Firmware-Upgrade-Library.pdf and WICED-Secure-Over-the-Air-Firmware-Upgrade.pdf
in the GitHub btsdk-docs repository.

Programming the device does more than just copy the patch and application code to flash. It also uses
commands to configure the structured data, cause the CPU to make function calls, configure hardware

registers, etc. The default way to download firmware is through boot loading over the HCI UART. The device

ROM contains a piece of code which can accept data through HCI commands from an external device (PC or
MCU) and store it in flash. When the application code is downloaded, the host MCU (or PC) first transfers a piece
of code called minidriver to SRAM; the minidriver then accepts further data through HCI commands and stores

it to on-chip flash (OCF). More details about the minidriver can be found later in this document.

CPU
HCI

UART

OCF

SRAM

Host MCU/PC

ROM

Figure 5 CYW208XX Firmware Download Flow

6.4 Memory Layout

The CYW208xx SoCs consist of various physical memories as discussed in Introduction. This section discusses in

detail the various memories of the CYW208xx SoCs. ROM and Flash are the nonvolatile physical memories
whereas SRAM provides the significant portion of the volatile memory in the CYW208xx. The utilization of patch

RAM to modify the ROM code was discussed in Firmware Architecture.

The nonvolatile memory for the Bluetooth device (on-chip flash or external serial flash) is divided into five
logical sections as shown in Figure 8. Table 1 gives details about each section of the memory layout. See

AN216403 - ModusToolbox Application Buffer for details on application buffer pool requirements of the

Bluetooth Stack.

Data Section 2 (DS2)

Data Section 1 (DS1)

Volatile Section (VS)

Static Section (SS)

Figure 6 Memory Organization of Nonvolatile Memory

https://github.com/cypresssemiconductorco/btsdk-docs/tree/master/docs/BT-SDK
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/WICED-Application-Buffer-Pools.pdf

Application Note 24 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

Table 1 Non-Volatile Memory Organization, On-chip Flash

 Section Name Offset Length Description

Static Section (SS) 0x500000 0x2000 Static section used internally by chip firmware.
This typically contains configuration records that

don’t change after factory programming.

Volatile Section

(VS)

0x500400 0x1000 First volatile section used by the application and
the stack to store data in the external or on-chip

flash memory

Data Section (DS1) 0x501400 0x1F600 First partition. Used to store application code

Data Section (DS2) 0x520A00 0x1F600 Second partition. Used to store application code

These values are indicative, and the actual values can be found in the BTP file which is discussed next.

The logical sections mentioned in Table 1 are aligned with the erase sector boundaries of the memory. These
details can be found in *.btp files located at \<mtw_path>\wiced_btsdk\dev-

kit\baselib\<device>\platforms\208XX_OCF.btp. More details on the memory layout can be found in the WICED-
Firmware-Upgrade-Library.pdf file in the GitHub btsdk-docs repository.

6.4.1 Significance of the *.btp File

The *.btp file contains information used by the download tools such as the minidriver location, baud rate,

memory section addresses and other details. It also contains information such as the BD ADDRESS which can
be changed while programming the device. Some of the parameters are:

• DLConfigCrystalFreqMHz X 10000 – Frequency of the crystal connected to the device

• DLConfigSerialControlBaudRate – UART baud rate used for programming

• ConfigDSLocation – DS1 location offset

• ConfigDS2Location – DS2 location offset

• DLConfigSSLocation – SS location offset

• DLConfigBD_ADDRBase – BD address

6.5 Programming

As explained earlier, the CYW208XX device can typically be used in two configurations – Controller mode or
Embedded mode.

In controller mode, the host typically downloads some code like the general patch to the Bluetooth device’s
SRAM or OCF. If the code is downloaded to SRAM, it needs to happen on each boot as the SRAM contents are

lost on reset.

In embedded mode, the device embedded stack is used for some of the host functionality and the application
code needs to be downloaded to the device’s OCF.

6.5.1 File Formats

Application code is usually kept in .hex or .hcd format. The *.hcd file is typically used for SRAM downloads and
*.hex files are typically used for flash downloads. As an intermediate step, the source code along with some
configuration values are converted to .cgs (configuration source) format and then converted to .hex or .hcd
format. The .hcd file is useful when an external MCU needs to program the Bluetooth device in controller mode

as the file size is smaller and the payload format is similar to the HCI commands. Intel .hex file is used when
programming to flash. The following diagram shows the file conversion process.

https://github.com/cypresssemiconductorco/btsdk-docs/tree/master/docs/BT-SDK

Application Note 25 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

These files must be parsed and converted to HCI commands to download to the device. In ModusToolbox this is
done by the ChipLoad tool.

Source files

.c, .h, .a files

ELF files

cgs files

Configuration source files. Contains

configuration parameters, patch code

and application code

Hex and hcd files

Hex files are in intel hex format and hcd

files have HCI commands

Arm

tools

cgs.exe

wiced-gen-cgs.pl

Figure 7 File Formats

6.5.1.1 Details of *.hcd Format

The hcd files are binary files that can be parsed and interpreted directly as HCI commands. The hcd files have all
the commands in binary format except the packet type which needs to be added by the host. The format of the

hcd files are as follows:

• The first two bytes are the command identifier. For example, the HCI_WRITE command is represented by

0x4C, 0xFC.

• The next byte is the command payload length. For example, 0x06 indicates that six more bytes will follow to
complete the command.

• The command payload.

To convert the file to HCI commands, only the HCI packet type needs to be added. For example, when sending a
command from the host, 0x01 should precede any HCI command to indicate that it is a command rather than

an event.

The following WRITE_RAM command is an example:

01 4C FC nn xx xx xx xx yy yy yy …

In this WRITE_RAM command:

• nn is 4 + N, which represents four address bytes plus N payload bytes.

• xx xx xx xx is the 4-byte, absolute RAM address.

• yy yy yy … are the N payload bytes to be loaded into the addressed RAM location.

The following response to each WRITE_RAM command is expected within 200 ms:

04 0E 04 01 4C FC 00

Application Note 26 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

6.5.1.2 Details of *.hex Format

The .hex file follows the Intel I32HEX conventions. The format consists of records delimited by ASCII carriage
return and line feed (0x0D, 0x0A). The format of the .hex files is as follows:

• First character is the start code ‘:’ (ASCII 0x3A)

• Next byte indicates payload length. For example, ‘FF’ indicates 255.

• Next four bytes indicates 16 address bits. For example, ‘1000’ represents address 0x1000. The type of
address depends on the type of command.

• Next byte indicates the type of command:

− ‘00’ is for data and the address field represents the lower 16 bits of the destination address.

− ‘01’ indicates end of file. The payload is 0 and the address field is set as ‘0000’.

− ‘04’ indicates extended address. The address field indicates the lower 16 bits of the address and the
payload represents the higher 16 bits of the address.

− ‘05’ for a 32-bit address payload. The address field is set as ‘0000’, the payload length is set as ‘04’ and the
payload is interpreted as a 32-bit address. This is often used to indicate a LAUNCH_RAM (described later)

destination.

6.5.1.3 Details of *.cgs Format

The .cgs file contains configuration parameters, patch code, and application code. The .elf file generated from

the application source code is converted to .cgs format and is appended to the patch .cgs file located at

\<mtw_path>\wiced_btsdk\dev-kit\baselib\208XXA1\internal\<device>\patches\patch.cgs.

The definition of the configuration parameters in the .cgs file can be found in \<mtw_path>\wiced_btsdk\dev-

kit\baselib\208XXA1\internal\<device>\configdef<device>.hdf.

Note: <device> - The device in the directory path stands for 20819A1 or 20820A1.

Parameters such as the crystal frequency, UART configuration, BD_ADDR, local name, and RSSI configuration

can be modified using the patch .cgs file.

6.5.2 File Generation During Build

The file conversion process is as follows:

1. The source files (.c, .h) are compiled and converted to .o (object) files using GNU tools.

2. Library sources are linked to library .a files.

3. These along with prebuilt library files are then linked to a .elf (executable and linkable format) file by GNU

tools.

4. The .elf file is converted to .cgs (configuration source) file using the \<mtw_path>\wiced_btsdk\dev-
kit\baselib\<device>\make\scripts\wiced-gen-cgs.pl script. The ROM patch code and platform .cgs files are
also appended.

5. The \<mtw_path>\wiced_btsdk\dev-kit\btsdk-tools\<OS>\CGS\cgs.exe tool is then used to convert the .cgs
file to Intel hex format. The cgs.exe application takes inputs such as the .cgs file created in the previous step

and .btp file. The cgs.exe application can take runtime arguments such as BD ADDRESS and overwrite the
BD ADDRESS in the .btp file. This can be useful while programming multiple devices with different
addresses.

6. The hex file is converted to an hcd file using the tool \<mtw_path>\wiced_btsdk\dev-kit\btsdk-
tools\<OS>\IntelHexToBin\IntelHexToHCD.exe.

Application Note 27 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

6.5.3 Recovery Process

Sometimes, the CYW208XX device may enter an unknown state or the HCI baud rate might have been changed
from default. In such cases, it is not possible to program the device using HCI UART. To program the device

correctly, the device needs to be put into the recovery mode. This is done by asserting the HCI UART CTS line
while resetting the device.

When the Bluetooth device is reset, it checks for status of the HCI UART CTS pin (recovery pin) during power-
ON. If the recovery pin is asserted (LOW) during reset, then the device enters what is called recovery mode. This
mode will attempt to detect the UART baud rate by checking the RX line for the bit pattern of an HCI_RESET
command. When detected, the HCI_RESET response is given at the same baud rate.

In this mode, most of the HCI commands will have no response. To download to the device in this mode, ignore

the ‘no response’ to HCI_DOWNLOAD_MINIDRIVER and proceed with the download procedures. If the CTS pin is

high after reset, then the device will check the OCF and apply any stored configuration, typically ending in a
mode ready to accept all HCI commands at a default baud rate. If no configuration is available, the device will
enter autobaud mode. Note that the application code can be directly loaded to the SRAM and executed or to
the serial flash and then executed on next boot up.

6.5.4 Minidriver

The minidriver is separate FW independent of the ROM code. It is used to download the application code to the

on-chip flash. The minidriver contains code to interpret certain HCI commands such as WRITE_RAM and
READ_RAM and execute those commands. To download the code to the on-chip flash, first the minidriver needs

to be written and executed from SRAM, which will interpret further HCI commands and write the code to the
correct location in flash. As soon as the code download is complete, the minidriver is discarded because it is no
longer needed. The minidriver will differ if the interface changes from UART to SPI or something else. The

default minidriver can be found at \<mtw_path>\wiced_btsdk\dev-kit\baselib\<device>\platforms\minidriver-

<device>-uart-patchram.hex.

6.6 Tools for Programming

To understand the download process and HCI commands flow in detail, see WICED-HCI-Control-Protocol.pdf in
the GitHub btsdk-docs repository.

ClientControl

ClientControl is a WICED application that acts as a Bluetooth host on a PC. It connects to the Bluetooth device
using HCI UART and communicates via the WICED HCI protocol. This application can be used to test the

CYW208XX device by sending commands to start/stop advertisements, send connection request, test HID

profile, etc. as well as download the firmware to the device SRAM. Note that because this tool downloads to the

device SRAM, it doesn’t require any minidriver.

To launch the ClientControl application for Windows, macOS, and Linux select the Bluetooth-SDK application

in ModusToolbox, and then click Quick Panel > Tools > ClientControl.

https://github.com/cypresssemiconductorco/btsdk-docs/tree/master/docs/BT-SDK

Application Note 28 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Software

Figure 8 ClientControl Window

6.6.1 ChipLoad

ChipLoad is a command-line utility used to download the firmware to the Bluetooth device. It takes inputs such

as the .hex file and .btp file to get the download data and download configuration respectively. It can be found
at \<mtw_path>\wiced_btsdk\dev-kit\btsdk-tools\<OS>\ChipLoad\.

Note that the ChipLoad tool supports the Intel hex format.

6.6.2 DetectAndId

The DetectAndId tool performs two tasks: Detect and ID. At first, this tool tries to detect the serial ports on
which Cypress Bluetooth devices are present. This is done by sending an HCI_RESET command on available

ports at various baud rates and waiting for appropriate response. In case the serial port is already given as an
input to this tool, it skips the port detect part.

The second task is to ID the connected device. This is done by sending a WICED HCI command to read the chip
ID. The received ID is then compared to the expected chip ID present in the chip specific ID file in this path

<mtw_path>\wiced_btsdk\dev-kit\baselib\<device>\platforms\CYW208XXA1_IDFILE.txt. This ensures that only

the right device is programmed. This can be used by other tools to download the application code.

6.6.3 Cypress Programmer

Cypress Programmer is a GUI application that can be used to program the CYW208xx based evaluation boards.
It provides options to program, erase, and verify the flash on the CYW208xx. The Cypress Programmer expects

the *.hex file that is generated by the build process of the Bluetooth application. On selecting the HCI UART
port, you can program the board. Please refer to the Cypress Programmer reference guide and release notes for
more details.

Application Note 29 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Summary

7 Summary

CYW208XX is the optimal solution for applications in wireless input, wearables, medical and beacon
applications for Internet of Things (IoT) devices. To facilitate design of cost-sensitive devices, the Arm Cortex-
M4 processor implements tightly coupled system components that reduce processor area while significantly

improving Bluetooth packet handling and peripheral system capabilities. It provides unique differentiating
features that allow it to address multiple market verticals while keeping the same chassis. This guide is useful
for programmers who are exploring the CYW208XX device features and peripherals. This guide teaches how to
use various CYW208XX SoC peripherals and how to overcome hardware level constraints when developing

applications and designing products.

Application Note 30 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Related Documents

8 Related Documents

Application Notes

AN225684 – Getting Started with

CYW208XX

Describes CYW208XX Bluetooth SoC and how to build your
first Bluetooth Low Energy application using the device in

ModusToolbox IDE

AN225948 - CYW20819/20820

Hardware Design Guideline

This document includes basic layout guidelines which include
the board stack up and the impedance control requirements,

component placements and recommended parts for the
critical components and routing guidelines and the

recommended trace width for various power traces.

AN225270 - CYW208XX Low

Power Guidelines

This document gives the guidelines on designing and

developing a low-powered application using CYW208XX and

the parameters to consider for power-efficient design.

AN216403 – Application Buffer

Pools

This document provides a description of buffers used by the
application and the upper layer stack of the WICED Bluetooth

Stack.

AN214852 - Collaborative

Coexistence Interface Between
Cypress-to Cypress Solutions

and Cypress-to-third-party Chips

This application note describes collaborative coexistence

hardware mechanisms and algorithms of the CYW43XX and
how to connect the COEX wiring between Cypress-to-Cypress

solutions or Cypress to a third-party chip.

Code Examples

Visit the GitHub repository for a comprehensive collection of code examples using ModusToolbox

IDE

Device and Evaluation Kit Documentation

CYW20819 Device Datasheet CYW920819EVB-02 Evaluation Kit

CYW20820 Device Datasheet CYW920820EVB-02 Evaluation Kit

CYBT-213043-02: EZ-BT™ Module CYBT-213043-MESH EZ-BT™ Module Mesh Evaluation Kit

Tool Documentation

ModusToolbox IDE The IDE for IoT designers

Cypress Programmer

Documentation

This page will provide Cypress Programmer GUI User Guide

and and Cypress Programmer release notes.

https://www.cypress.com/an225684
https://www.cypress.com/an225684
https://www.cypress.com/documentation/application-notes/an225948-cyw2081920820-hardware-design-guideline
https://www.cypress.com/documentation/application-notes/an225948-cyw2081920820-hardware-design-guideline
https://www.cypress.com/an225270
https://www.cypress.com/an225270
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/WICED-Application-Buffer-Pools.pdf
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/WICED-Application-Buffer-Pools.pdf
https://www.cypress.com/documentation/application-notes/an214852-collaborative-coexistence-interface-between-cypress-cypress
https://www.cypress.com/documentation/application-notes/an214852-collaborative-coexistence-interface-between-cypress-cypress
https://www.cypress.com/documentation/application-notes/an214852-collaborative-coexistence-interface-between-cypress-cypress
https://www.cypress.com/documentation/application-notes/an214852-collaborative-coexistence-interface-between-cypress-cypress
https://github.com/cypresssemiconductorco/Code-Examples-BT-SDK-for-ModusToolbox
https://www.cypress.com/datasheet/CYW20819
http://www.cypress.com/CYW920819EVB-02
https://www.cypress.com/datasheet/CYW20820
http://www.cypress.com/CYW920820EVB-02
https://www.cypress.com/documentation/datasheets/cybt-213043-02-ez-bt-module
https://www.cypress.com/documentation/development-kitsboards/cybt-213043-mesh-ez-bt-module-mesh-evaluation-kit
http://www.cypress.com/modustoolbox
https://www.cypress.com/products/psoc-programming-solutions
https://www.cypress.com/products/psoc-programming-solutions

Application Note 31 of 32 002-26546 Rev. *B

 2021-03-23

CYW208XX Feature and Peripheral Guide

Revision history

Revision history

Document

version

Date of release Description of changes

** 2019-03-27 Initial release

*A 2020-04-20 Updated the entire document for CYW20820.

Added Keyboard Scanner (Keyscan) section

*B 2021-03-23 Updated in Infineon template

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-03-23

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.cypress.com/support

Document reference

002-26546 Rev. *B

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

